### Introduction

Generally, structural loads including forces, deformations or accelerations applied to a structure can be divided into two main category: 1- Dead load, and 2- Live load

### Concepts and Formulas

Dead loads are static forces that are relatively constant for an extended time; usually the weight of materials plus immovable fixtures such as carpet, roof and etc.  Minimum design dead load can be found in ASCE 7 Table C3-1.

Live loads are usually unstable or moving loads (temporary loads) and based on the functionality of the structure. These dynamic loads may involve considerations such as impact, momentum, vibration, and etc.

Roof and floor live loads are produced during maintenance by workers, equipment and materials, and during the life of the structure by movable objects, such as planters and people.

Minimum design live load can be found in ASCE 7 Table 4-1 or IBC Table 1607.1.

Examples:Office building:

• Lobbies and first-floor corridors: 100 psf (uniform)  2000 lbs (concentrated)
• Offices: 50 psf (uniform), 2000 lbs (concentrated)
• Corridors above first floor: 80 psf (uniform), 2000 lbs (concentrated)

Floor live load reduction: (ASCE 7-05/10, IBC 2006/2009/2012)

For live load not exceeding 100 psf, not in passenger garages, not in assembly uses, with KLL x AT more than 400 square ft2, Live load can be reduced by the following equation

$L=L_0(0.25+\frac{15}{\sqrt{K_{LL}A_T}})$

where L0 is unreduced live load; AT is tributary area; and KLL is the live load reduction element factor:

KLL Use
4  interior column and exterior columns without cantilever slabs.
3 edge column with cantilever slabs.
2 corner column with cantilever slabs, edge beams without cantilver slabs, and interior bams.
1 all other conditions

#### Alternate floor live load reduction: (IBC)

For live load not exceeding 100 psf, not in passenger garages, not in group A occupancies of IBC, supporting more than 150 square ft2, Live load can be reduced by the following percent.

R = 0.08*(A-150)

A is tributary area

R is percent of reduction shall not be more than 40 percent for horzontal member, and 60 percent for vertical member, and not exeeding

R = 23.1 (1+D/Lo)

Roof live load may be reduced by the following equation:

Lr = Lo R1 R2

Where Lr shall not be less than 12 psf and not more than 20 psf

• R1 =1                      for At less than or equal to 200 psf,
• R1 = 1.2 - 0.001 At      for between 200 psf and 600 psf
• R1 =0.6                     for At greater than or equal to 600 psf,
• R=1                       for F less than or equal to 4
• R2 = 1.2 - 0.01 F      for between 200
• R2 =0.6                    for F greater than or equal to 600 psf,

where F is number of inches of rise per foot.

#### Handrails, Guardrail systems, and grab bar:

Handrail: 200 lbs concentrated load in any direction, any point.

Guardrail: 50 lb/ft uniform load and 200 lbs concentrated load at top. 50 lbs in 1 ft square area for intermediated rails, panel filters, etc.

Grab bar: 250 lbs concentrated load in any direction, any point.

#### Vehicle Barrier System:

6000 lbs concentrated load in 1 square foot area at 1 ft 6 inches above floor or ramp surface.

Maximum Crane wheel load shall be the sum of weight of bridge, crane load capacity, and weight of trolley with trolley in a position that produces maximum load

Vertical impact force:

• Monorail cranes (powered) : 25%
• Cab-operated or remotely operated bridge cranes (powered): 25%
• Pendant-operated bridge crane (powered): 10%
• Hand-geared bridge, trolley, and hoist: 0%

Lateral force: 20%

Longitudinal force: 10%

### Watch Videos

No videos available for this topic. Suggest one!

### Solved sample problems

No files available for this topic. Suggest one!